Laboratory for Exploration and Astronautical Physics

Scope

The Laboratory for Exploration and Astronautical Physics (LEAP) aims at deepening the understanding of underlying plasma physics principles presented in the exploratory ventures of human kind through cosmos.

To do so, we feature a multitude of research lines ranging from space weather interactions with celestial and anthropomorphic bodies, space suit design, electric propulsion, atmospheric reentry, and planetary science.

We deploy a multitude of research methodologies, with a meritorious track record on numerical modeling resorting to the development of new computational methods for high-performance computing, and advanced expertise on experimental techniques deployed on the group's vacuum chambers.


Selected Publications

* denotes the advisee

  • J. Wang and Z. Huang*, 2023. Multi-Scale Numerical Simulations of Plasma Charging Effects for Astronaut at the Lunar Terminator, IEEE Trans. Plasma Science, in press.
  • J. Asher*, O. Acarregui, and J. Wang, 2022. Investigation of Ionic Electrospray Contamination for Small Satellite Formation Flight, submitted to IEEE Trans. Plasma Science, in press.
  • L. Brieda, E. Helou*, and J. Wang, 2022. Towards Modeling of Charged Dust Dynamics at Mesoscale Resolution, submitted to IEEE Trans. Plasma Science, in press.
  • Z. Huang*, K. Nomura, L. Morrissey, and J. Wang, 2022. Molecular Dynamics Simulation of Solar Wind Implantation in the Permanently Shadowed Regions on Lunar Surface, Geophys. Res. Letters, 49, e2022GL099333 (2022). doi:10.1029/2022GL099333.
  • C. Cui*, S.P. Gary, and J. Wang, 2022. Whistler Turbulence vs. Whistler Anisotropy Instability: Particle-in-Cell Simulation and Statistical Analysis, Frontiers in Astronomy and Space Sciences, 9:941241 (2022). doi:10.3389/fspas.2022.941241.
  • Y. Narita, T.N. Parashar, and J. Wang, 2022. The Gary Picture of Short-Wavelength Plasma Turbulence - The Legacy of Peter Gary, Frontiers in Physics, 10:942167 (2022). doi:10.3389/fphy.2022.942167.
  • R. Antypas*, K. Sampson*, D. Torre*, and J. Wang, 2022. Large Bradbury Nielsen Gate Optimized for Electrospray Time of Flight Spectroscopy, J. Propulsion and Power, 38(6), pp911–919 (2022). doi:10.2514/1.B38502.
  • J. Asher* and J. Wang, 2022. 3-Dimensional PIC Simulations of Bipolar Ionic Electrospray Thruster Plume, J. Propulsion and Power, 38(4), pp573–580, (2022). doi:doi/abs/10.2514/1.B38610.
  • J. Asher*, Z. Huang*, C, Cui*, and J. Wang, 2022. Multi-Scale Modeling of Ionic Electrospray Emission, J. Applied Physics, 131, 014902 (2022). doi:10.1063/5.0071483. (Selected as featured article).
  • C. Cui* and J. Wang, 2021. Grid-Based Vlasov Simulation of Collisionless Plasma Expansion, Physics of Plasmas, 28, 093510 (2021). doi:10.1063/5.0058635.
  • Z. Huang*, K. Nomura, and J. Wang, 2021. Molecular Dynamics Simulations of Water Formation and Retention by Micrometeoroid Impact on Lunar Surface, Geophys. Res. Letters, 48(15), 2021GL093509 (2021). doi:10.1029/2021GL093509.
  • M. Bechini, M. Quadrelli, M. Lavagna, and J. Wang, 2021. Hovering Capabilities Analysis of an Electrically Actuated Spacecraft in a Small-Body Plasma Field, J. Spacecraft and Rockets, 58(5), pp1461–1476 (2021). doi:10.2514/1.A34954.
  • Z. Huang*, K. Nomura, A. Nakano, and J. Wang, 2021. Molecular Dynamics Simulations of Dielectric Breakdown of Lunar Regolith: Implications for Water Ice Formation on Lunar Surface, Geophys. Res. Letters, 48(3), e2020GL091681 (2021). doi:10.1029/2020GL091681.
  • Y. Hu, J. Wang, and Q. Sun, 2020. Geometrically Self-Similar Ion Acceleration in Collisionless Plasma Beam Expansion, Plasma Sources Science and Technology, 29, 125004 (2020). doi:10.1088/1361-6595/abbf9b.
  • J. Wang and Y. Hu*, 2019. On the Limitations of Hybrid Particle-in-Cell for Ion Thruster Plume Simulations, Physics of Plasmas, 26, 103502 (2019). doi:10.1063/1.5111791.
  • K. Chou*, A. Wang*, W. Yu*, and J. Wang, 2019. Laboratory Experiments on Dusty Spacesuit Charging and Arcing in Plasma, IEEE Trans. Plasma Science, 47(8), pp3898-3904 (2019). doi:10.1109/TPS.2019.2922243.
  • Y. Hu* and J. Wang, 2019. Plasma Wake Simulation for Charged Space Platforms: Fully Kinetic PIC vs. Hybrid PIC, IEEE Trans. Plasma Science, 47(8), pp3731-3738 (2019). doi:10.1109/TPS.2019.2920322.
  • D. Han* and J. Wang, 2019. 3-D Fully-Kinetic Particle-in-Cell Simulations of Small Asteroid Charging in the Solar Wind, IEEE Trans. Plasma Science, 47(8), pp3682-3688 (2019). doi:10.1109/TPS.2019.2919895.
  • W. Yu*, D. Han*, and J. Wang, 2019. Numerical Simulations of Dust Dynamics around Small Asteroids, IEEE Trans. Plasma Science, 47(8), pp3724-3730 (2019). doi:10.1109/TPS.2019.2920263.
  • Y. Hu* and J. Wang, 2019. Assessment of Electron Thermodynamic and Fluid Approximations for Collisionless Plasma Expansion into a Wake, Physics of Plasmas, 26, 023515 (2019). doi:10.1063/1.5065395.
  • J. Wang, and Y. Hu*, 2018. The Breakdown of the Fluid Approximation for Electrons in a Plasma Wake, J. Geophys. Res., (2018). doi: 10.1029/2018JA025743.
  • D. Han*, J. Wang, and X. He, 2018. Immersed-Finite-Element Particle-in-Cell Simulations of Plasma Charging at the Lunar Terminator, J. Spacecraft & Rockets, 55(6), pp1490-1497 (2018). doi:10.2514/1.A34002.
  • Y. Hu* and J. Wang, 2018. Expansion of a Collisionless Hypersonic Plasma Plume into a Vacuum, Physical Review E, 98(2), 023204 (2018). doi:10.1103/PhysRevE.98.023204.
  • Y. Zhao*, J. Wang, and H. Usui, 2018. Simulations of Ion Thruster Beam Neutralization Using a Particle-Particle Model, J. Propulsion & Power, 34(5), pp1109-1115 (2018). doi:10.2514/1.B36770.
  • S.P. Gary, Y. Zhao*, R.S. Hughes*, J. Wang, and T. Parasha, 2018. Species Entropies in the Kinetic Range of Collisionless Plasma Turbulence: Particle-in-Cell Simulations, Astrophysical Journal, 859(2) (2018). doi:10.3847/1538-4357/aac022.
  • K. Chou* and J. Wang, 2017. Laboratory Measurements of Dusty Surface Charging in Plasma, Review of Scientific Instruments, 88, 093517 (2017). doi:10.1063/1.5004116.
  • R.S. Hughes*, S.P. Gary, J. Wang, and T. Parashar, 2017. Kinetic Alfven Turbulence: Electron and Ion Heating by Particle-in-Cell Simulations, Astrophysical Journal Letters, 847:L14 (2017). doi:10.3847/2041-8213/aa8b13.
  • Y. Hu* and J. Wang, 2017. Fully Kinetic Simulations of Collisionless, Mesothermal Plasma Emission: Microscopic Electron Kinetics and Macroscopic Plume Characteristics, Physics of Plasmas, (2017). doi:1.1063/1.4978484.
  • Y. Hu*, A. Nakano, and J. Wang, 2017. Directional Melting of Alumina via Polarized Microwave Heating, Applied Physics Letters, 110, 044102 (2017). doi:10.1063/1.4973698.
  • R.S. Hughes*, S.P. Gary, and J. Wang, 2017. Particle-in-Cell Simulations of Electron and Ion Dissipation by Whistler Turbulence: Variations with Electron Beta, Astrophysical Journal Letters, 834:L15 (2017). doi:10.3847/2041-8213/835/1/L15.
  • Y. Chu, D. Han*, Y. Cao, X. He, and J. Wang, 2017. An Immersed-Finite-Element Particle-in-Cell Simulation Tool for Plasma Surface Interaction, International Journal of Numerical Analysis and Modeling, 14(2), pp175-200 (2017).
  • D. Han*, J. Wang, and X. He, 2016. A Non-Homogeneous Immersed-Finite-Element Particle-in-Cell Method for Modeling Dielectric Surface Charging in Plasmas, IEEE Trans. Plasma Science, (2016). doi:10.1109/TPS.2016.2580698.
  • D. Han*, P. Wang*, X. He, T. Lin, and J. Wang, 2016. A 3D Immersed Finite Element Method for Non-Homogeneous Interface Flux Jump with Applications to Particle-in-Cell Simulations of Electrostatic Plasma Environments on the Lunar Surface, J. Computational Physics, (2016). doi:10.1016/j.jcp.2016.05.057.
  • R.S. Hughes*, J. Wang, V. Decyk, and S.P. Gary, 2016. Effects of Variations in Electron Thermal Velocity on the Whistler Anisotropy Instability: Particle-in-Cell Simulations, Physics of Plasmas, 23, 042106 (2016). doi:10.1063/1.4945748.
  • S.P. Gary, R.S. Hughes*, and J. Wang, 2016. Whistler Turbulence Heating of Electrons and Ions: Three-Dimensional Particle-in-Cell Simulations, Astrophys J., 816:102 (2016). doi:10.3847/0004-637X/816/2/102.
  • J. Wang, D. Han*, and Y. Hu*, 2015. Kinetic Simulations of Plasma Plume Potential in a Vacuum Chamber, IEEE Trans. Plasma Science, (2015). doi:10.1109/TPS.2015.2457912.
  • W. Yu*, J. Wang, and K. Chou*, 2015. Laboratory Measurement of Lunar Regolith Simulant Charging in a Localized Plasma Wake, IEEE Trans. Plasma Science, (2015). doi:10.1109/TPS.2015.2492551.
  • Y. Hu* and J. Wang, 2015. Electron Properties in Collisionless, Mesothermal Plasma Expansion: Fully Kinetic Simulations, IEEE Trans. Plasma Science, (2015). doi:10.1109/TPS.2015.2433928.
  • O. Chang*, S.P. Gary, and J. Wang, 2015. Whistler Turbulence Forward Cascade Versus Inverse Cascade: Three-Dimensional Particle-in-Cell Simulations, Astrophys J., 800:87 (2015). doi:10.1088/0004-637X/800/2/87.
  • R. S. Hughes*, S.P. Gary, and J. Wang, 2014. Electron and Ion Heating by Whistler Turbulence: Three-Dimensional Particle-in-Cell Simulations. Geophys. Res. Lett., 41 (2014). doi:10.1002/2014GL062070.
  • S.P. Gary, R. S. Hughes*, J. Wang, and O. Chang, 2014. Whistler Anisotropy Instability: Spectral Transfer in a Three-Dimensional Particle-in-Cell Simulation, J. Geophys. Res., 119, pp1429-1434 (2014). doi:10.1002/2013JA019618.
  • O. Chang*, S.P. Gary, and J. Wang, 2014. Energy Dissipation by Whistler Trubulence: Three-Dimensional Particle-in-Cell Simulations, Physics of Plasmas, 21, 052305-1 to 052305-6 (2014). doi:10.1063/1.4875728.
  • J. Polansky*, J. Wang, N. Ding*, 2013. Experimental Investigation on Plasma Plume Potential, IEEE Trans. Plasma Science, 41(12), pp3438-3447 (2013). doi:10.1109/ TPS.2013.2277724.
  • N. Ding*, J. Wang, J. Polansky*, 2013. Measurement of Dust Charging on a Lunar Regolith Simulant Surface, IEEE Trans. Plasma Science, 41(12), pp3498-3504 (2013). doi:10.1109/ TPS.2013.2279170.
  • O. Chang*, S.P. Gary, J. Wang, 2013. Whistler Turbulence at Variable Electron Beta: Three-dimensional Particle-in-Cell Simulations, J. Geophys. Res., 118(6), 2824-2833 (2013).
  • J. Wang, P. Wang*, M. Belhaj, J-C Mateo Velez, 2012. Modeling Facility Effects on Secondary Electron Emission Experiment, IEEE Trans. Plasma Science, 40(10), pp2773-2780 (2012). doi:10.1109/ TPS.2012.2211041.
  • S.P. Gary, O. Chang*, J. Wang, 2012. Forward Cascade of Whistler Turbulence: Three-dimensional Particle-in-Cell Simulations, Astrophys J., 755:142 (2012). doi:10.1088/ 0004-637X/755/2/142.
  • J. Wang, O. Chang*, Y. Cho, 2012. Electron-Ion Coupling in Mesothermal Plasma Beam Emission: Full Particle PIC Simulations, IEEE Trans. Plasma Science, 40(2), pp230-236 (2012). doi:10.1109/ TPS.2011.2179066.
  • O. Chang*, S. P. Gary, and J. Wang, 2011. Whistler Turbulence Forward Cascade: Three-dimensional Particle-in-Cell Simulations, Geophys. Res. Lett., 38, L22102 (2011). doi:10.1029/ 2011GL049827.

Alumni

With dissertation title and first or current position after Ph.D.
  • Ning Ding, Experimental and Numerical Investigations of Charging Interactions of a Dusty Surface in Space Plasma, 2012. First Position: Senior Engineer, Rigaku Innovative Technologies, Inc.
  • John Polansky, Laboratory Investigations of the Near Surface Plasma Field and Charging at the Lunar Terminator, 2013. First Position: Assistant Professor, Kyushu Institute of Technology, Japan.
  • Ouliang Chang, Three-Dimensional Kinetic Simulations of Whistler Turbulence in Solar Wind on Parallel Supercomputers, 2013. Current Position: Senior Computer Scientist, Facebook.
  • Daoru Han, Particle-in-Cell Simulations of Plasma Interactions with Asteroidal and Lunar Surfaces, 2015. Current Position: Associate Professor, Missouri University of Science and Technology.
  • R. Scott Hughes, Particle-in-Cell Simulations of Kinetic-Scale Turbulence in the Solar Wind, 2017. Current Position: Member of Technical Staff, Jet Propulsion Laboratory.
  • Kevin Chou, Experimental Investigations of Dusty Surface Charging, 2017. First Position: Member of Technical Staff, Aerospace Corporation.
  • William Yu, Numerical and Experimental Investigations of Dust-Plasma-Asteroid Interactions, 2018. First Position: Space Systems Engineer, Ball Aerospace Corporation.
  • Yuan Hu, Kinetic Studies of Collisionless Mesothermal Plasma Flow Dynamics, 2018. Current Position: Associate Professor, Institute of Mechanics, Chinese Academy of Sciences.
  • Yinjian Zhao, Particle Simulations of Colloid Thruster Beam, 2019. First Position: Postdoctoral Fellow, Lawrence Berkeley National Laboratory.
  • Robert Antypas, An Investigation into Magnetically Induced Extractor-Less Electrospray Propulsion Devices, 2021. First/Current Position: Engineer/Program Manager, Air Force Research Laboratory.
  • Jeffrey Asher, Numerical and Experimental Investigations of Ionic Electrospray Thruster Plume, 2022. First/Current Position: Member of Technical Staff, Aerospace Corporation.
  • Ziyu Huang, Lunar Surface-Environmental Interactions and Their Effects on Lunar Water Formation and Exosphere: Atomic Scale Simulations, 2023. First/Current Position: Postdoctoral Fellow, Boston University.
  • Chen Cui, Grid-Based Vlasov Method for Kinetic Plasma Simulations, 2023. First/Current Position: Assistant Professor, Mississippi State University.

Published on October 17th, 2023

Last updated on October 17th, 2023